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Abstract

Analytical expressions are derived, using asymptotics, for the fluid–structure coupled wavenumbers in a one-dimensional

(1-D) structural acoustic waveguide. The coupled dispersion equation of the system is rewritten in the form of the

uncoupled dispersion equation with an added term due to the fluid–structure coupling. As a result of this coupling, the

prior uncoupled structural and acoustic wavenumbers, now become coupled structural and acoustic wavenumbers. A fluid-

loading parameter e, defined as the ratio of mass of fluid to mass of the structure per unit area, is introduced which when

set to zero yields the uncoupled dispersion equation. The coupled wavenumber is then expressed in terms of an asymptotic

series in e. Analytical expressions are found as e is varied from small to large values. Different asymptotic expansions are

used for different frequency ranges with continuous transitions occurring between them. This systematic derivation helps

to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values.

Though the asymptotic expansion used is limited to the first-order correction factor, the results are close to the numerical

results. A general trend is that a given wavenumber branch transits from a rigid-walled solution to a pressure-release

solution with increasing e. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled

analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In structural acoustics, one of the many relevant questions is how a wavenumber of a structure vibrating in
vacuum changes when placed in contact with (or immersed in) a fluid and also how the acoustical wavenumber
in an infinite domain (or inside a rigid-walled waveguide) modifies when in contact with (or enclosed by) a
flexible structure. The common way of investigating these two questions is to derive a fluid–structure coupled
dispersion relation and find the modified wavenumbers (numerically or analytically).

Fluid–structure interaction where the fluid domain is infinite is quite different in its characteristics from that
where the fluid is enclosed by a flexible structure. Our focus in this study shall be a system where the fluid is
enclosed in a 1-D flexible-walled waveguide. As the literature survey section will show, several relevant studies
exist where coupled wavenumber results have been presented for systems such as fluid-filled rectangular ducts
and cylindrical shells. These studies have used numerical methods in obtaining the solution.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic showing the flexible plate with the column of acoustic fluid having a rigid cover plate at the top.
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It would, however, be useful if one could derive analytical expressions for the coupled wavenumbers (as
opposed to numerical solutions) so that the physics can be brought out readily and the expressions themselves
could be of use in design. Asymptotic methods offer such means of arriving at the analytical expressions. For
example, the coupled dispersion equation can be expressed as the in vacuo structural dispersion equation with
a correction term due to the fluid. One could then find a perturbed solution to the structural wavenumber
around the in vacuo solution. A similar approach can be used for the acoustical wavenumber also with a
correction term due to the flexible structure. The analytical expression directly gives the shift in the uncoupled
wavenumber due to the coupling. Thus, one can understand the wavenumber shift as being due to a stiffness-
like or an inertia-like effect of the structure/fluid on the fluid/structure, respectively. Such information can be
useful for a practicing engineer in understanding shifts of resonances in finite structural acoustic systems due
to fluid–structure coupling.

In this article, the system considered is a flexible infinite plate (in the xz plane) in contact with a fluid column
of height a (in the y-direction). The top of the fluid column is covered with a rigid plate (at y ¼ a) (see Fig. 1).
We assume that all physical quantities are independent of z. The x-direction flexural plate wavenumber gets
influenced by the presence of the fluid column and so also the acoustical wavenumber in the fluid modifies due
to the flexible plate. This coupling effect is represented by a fluid-loading parameter e (to be defined later).
Asymptotic expressions for the coupled wavenumbers of the system described above are derived, first for small
and then for large e values.

2. Literature survey

In the present section we briefly review earlier works of similar nature. In the later part of the article we shall
compare our results with some of the results reported in these references.

This problem is identical to that analysed by Fahy [1]. Instead of the rigid cover plate at y ¼ a,
he considered another identical flexible plate at y ¼ 2a and analysed symmetric modes only. Under
the symmetry assumption, this implies that the y-direction velocity is zero at the centerline y ¼ a,
which is exactly our model. We shall analyse the problem in a greater detail. While Fahy has
presented numerical solutions, these solutions cannot be traced from their uncoupled counterparts. Our
approach being based on analytical expressions such tracing is possible, bringing useful insights to the
solutions.

An early experimental investigation of sound propagation through flexible cylindrical pipes was carried on
by Kerschen and Johnston [2]. It was observed that the modal contribution of each cut-on mode encounters a
dip at the frequency where the axial phase speed of the cut-on mode coincides with the flexural wave speed of
the structural material. They concluded that at these frequencies, the dip in the modal contribution was due to
the energy being carried by the structural vibrations. Cabelli [3] studied the dispersion characteristics of an
infinite duct with a square cross-section with one flexible wall clamped at the edges. A mode summation
procedure was adopted for this purpose. A numerical solution was presented for the coupled dispersion
characteristics by truncating the summation to a finite number of terms. Experimental study on sound
propagation in a flexible membrane duct was carried by Huang et al. [4]. A theoretical model in support of
their experimental result was also presented. A further generalised study by Ko [5] included mean flow effects
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in a 2-D acoustic duct bounded by a flexural beam on one side. He theoretically found the axial phase
velocities for various acoustic modes. He concluded that the phase velocities are not greatly affected if the
acoustic wave propagation is in the direction of bulk flow. However, large changes were observable in case the
acoustic wave propagation is in the direction opposite to that of the bulk flow. Experimental studies on flexible
membrane ducts including fluid flow effects were presented by Choi and Kim [6]. Coupled dispersion
characteristics for fluid-filled cylindrical pipes was presented by Fuller and Fahy [7]. They used a numerical
solution methodology in solving the coupled dispersion equation. They performed studies for different values
of shell thickness to radius ratio and also used different material combinations. The behaviour of various
branches of the dispersion curve under the influence of these parameters was discussed in their article. Pavic [8]
in his study of vibrational energy flow in a cylindrical shell also obtained the dispersion curves of a fluid-filled
cylindrical shell. Au-Yang [9] studied a model of coaxial cylinders with fluid filled in the annular region and
the outer cylinder being rigid. He presented the hydrodynamic mass perceived by the structure due to the
presence of the fluid.

Asymptotic analysis has been widely prevalent in solving a wide realm of problems. Excellent treatises are
available which introduce the subject [10,11]. The use of asymptotic analysis methodology in analysing the
coupled structural-acoustic problem as a perturbation over the in vacuo structural dynamics and the
uncoupled acoustic problem was elaborated in the classic text by Morse and Ingard [12]. Later,
Crighton [13,14] developed this methodology further. Morse and Ingard as also Crighton used asymptotic
analysis in the context of external fluid of infinite extent. Further work in this direction is being
carried by Peake and Sorokin [15] and Chapman and Sorokin [16]. In the present article, we use
the asymptotic method similar to Crighton [13] in studying the coupled structural acoustics problem when the
fluid in contact with the structure is of finite extent. In contrast to the external unbounded fluid domain, the
complication of branch-cuts does not arise for the case of bounded fluid domains. However, in the latter case
the cut-on effects arise.

In the following sections, a detailed derivation of the dispersion relation for the system shown in Fig. 1 is
presented.
3. The dispersion relation

We begin with the derivation of the dispersion equation for our model. In our approach, frequency is kept
as an independent variable and the coupled wavenumber will be found as a function of frequency. At a
circular frequency o, the acoustic pressure in the fluid is described by the acoustic wave equation in 2-D
Cartesian coordinates given by

q2pðx; y; tÞ

qx2
þ

q2pðx; y; tÞ

qy2
¼

1

c2
q2pðx; y; tÞ

qt2
, (1)

which has the solution of the form (see Ref. [1] for detailed derivation):

pðx; y; tÞ ¼ Aeiðot�kxx�kyyÞ þ Beiðot�kxxþkyyÞ, (2)

where kx is the wavenumber in the x-direction, ky is the wavenumber in the y-direction. Also, we have the
relation k2

x þ k2
y ¼ k2

¼ o2=c2, where k is the acoustic wavenumber and c the sonic velocity of the acoustic
medium.

The governing differential equation for the transverse displacement (in the y-direction) w(x) of the plate at a
frequency o is (due to independence of all quantities in the z-direction, all partial derivatives with respect to z

vanish)

Eh3

12ð1� n2Þ
d4wðxÞ

dx4
� rpho2wðxÞ ¼ �pðx; 0Þ, (3)

where E is the modulus of elasticity, rp the beam density, h the thickness of the beam, n the Poisson’s ratio of
the plate material and m ¼ rph is the mass per unit length of the beam of unit width (see Ref. [1] for details).
We shall use I to denote the quantity h3=ð12ð1� n2ÞÞ.
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The acoustic pressure and velocity in the y-direction are related by

�iorvðx; yÞ ¼
qpðx; yÞ

qy
, (4)

where r is the fluid density and v the acoustic velocity in the y-direction.
At the structure–fluid interface (y ¼ 0), the condition of velocity continuity results in v(x,0) ¼ iow(x).

Applying Eq. (4) at y ¼ 0 and using the above velocity continuity condition we have

o2rwðxÞ ¼
qpðx; yÞ

qy

� �
y¼0

¼ ð�ikyAþ ikyBÞe�ikxx. (5)

At y ¼ a, the zero velocity due to the rigid cover plate and Eq. (4) give

ð�ikyAe�ikya þ ikyBeikyaÞe�ikxx ¼ 0) A ¼ Bei2kya. (6)

From Eqs. (5) and (6), we thus have

wðxÞ ¼
Bikye

�ikxxð1� ei2kyaÞ

o2r
. (7)

Eq. (3) now becomes

ðEIk4
x � o2mÞwðxÞ ¼ �Be�ikxxð1þ ei2kyaÞ. (8)

Let the in vacuo bending wavenumber be denoted by kb ¼ mo2=EI
� �1=4

. Using Eq. (7), Eq. (8) becomes

ðEIk4
x � o2mÞ

ikyð1� ei2kyaÞ

o2r
¼ �ð1þ ei2kyaÞ ) ðEIk4

x � o2mÞ ¼ �
o2r
ky

cot ðkyaÞ. (9)

Further rearrangement leads to

k4
x � k4

b ¼ �
k4

bra

m

cotðkyaÞ

kya
)

k4
x

k4
b

¼ 1�
ra

m

� � cotðkyaÞ

kya

� �
. (10)

Eq. (10) is non-dimensionalized with respect to the coincidence frequency (oc) and the wavenumber at
coincidence (kc) to give the following non-dimensional coupled dispersion relation for the structural-acoustic
system:

x4

O2
� 1

� �
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q
tan l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q	 
� �
þ � ¼ 0. (11)

The non-dimensional parameters are explained in Table 1.
The coincidence frequency (oc) appearing in the non-dimensionalization process is defined (as in Fahy [1])

as the frequency at which the wavenumber of the in vacuo plate equals the wavenumber of the uncoupled plane
Table 1

Non-dimensional parameters used in Eq. (10) to arrive at Eq. (11)

Non-dimensional parameters Physical description

O ¼
o
oc

¼
k

kc

Non-dimensional frequency

l ¼ kca Non-dimensional fluid column height

� ¼
ra

m
Fluid loading parameter

x ¼
kx

kc

Coupled wavenumber non-dimensionalized with respect to the coincidence wavenumber

w ¼
kx

k
¼

x
O

Coupled wavenumber non-dimensionalized with respect to the acoustic wavenumber
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acoustic wave. Thus, we have the following relation:ffiffiffiffiffiffiffiffiffiffi
mo2

c

EI

4

r
¼

oc

c
) oc ¼ c2

ffiffiffiffiffiffi
m

EI

r
and kc ¼

oc

c
¼ c

ffiffiffiffiffiffi
m

EI

r
. (12)

Eq. (9) is the in vacuo beam equation with an added term on the right side due to fluid loading. For the
coupled structural wavenumber (kx), we look for perturbations to the in vacuo wavenumber kb. Similar to the
in vacuo structural wavenumber which modifies due to the presence of the acoustic medium, the plane wave
and cut-on acoustic wavenumbers modify due to the fluid–structure coupling. This modification of the
acoustic wavenumber can be looked upon as due to a change from a zero velocity boundary condition (very
hard structure) or a zero pressure-boundary condition (very soft structure) to a boundary condition caused by
a structure with finite flexibility. From the next section, we begin deriving the asymptotic expressions for these
coupled wavenumbers (structural and acoustic). Coupled wavenumbers for small values of the fluid-loading
parameter e will be presented first in Section 4 followed by Section 5 for large values of e.
4. Small fluid-loading parameter

Eq. (11) is rewritten below, where the first square bracketed term is identified as the structural dispersion
relation and the second bracketed term corresponds to the acoustic dispersion relation:

x4

O2
� 1

� �zfflfflfflfflfflffl}|fflfflfflfflfflffl{Structure

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Acoustic plane wave

tan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q	 
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Rigid duct cut�on
2
6664

3
7775þ � ¼ 0.

In the equation above, the condition � ¼ ra=m ¼ 0 corresponds to a zero-density ambient fluid for the
structure and also to an infinitely dense structure as seen by the fluid. The solutions in that case, correspond to
the in vacuo structural wavenumber, the wavenumber of the plane acoustic wave and the wavenumber of the
rigid-duct acoustic cut-on (with velocity zero on the edges y ¼ 0 and y ¼ a), respectively. These wavenumbers
can be obtained by equating each of the bracketed expressions in the above equation to zero, resulting in

x ¼ O1=2, (13a)

x ¼ O, (13b)

l2ðO2 � x2Þ ¼ n2p2 ) x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 �

n2p2

l2

s
where n ¼ 1; 2; 3; . . . (13c)

Eqs. (13a), (13b) and (13c) in the dimensional form are kx ¼
ffiffiffiffiffiffiffi
kkc

p
, kx ¼ k and kx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� n2p2ð Þ=l2

q
,

respectively. These solutions are presented in Fig. 2 for l ¼ 3.
Instead of e ¼ 0, when 0oe51, the solutions of x are expected to be perturbations to Eqs. (13a), (13b) and

(13c). These perturbed solutions will be denoted by xs(e), xa(e) and xn
að�Þ, respectively. The functions xs(e), xa(e),

xn
að�Þ will be such that with e ¼ 0 these reduce to the expressions in Eqs. (13a), (13b) and (13c). Thus, xs(e) is a

perturbation to the in vacuo structural wavenumber, while xa(e) is a perturbation to the wavenumber of the
acoustic plane wave. In this article we shall use the phrases, ‘‘coupled structural wavenumber’’, and ‘‘coupled
acoustic wavenumber’’, respectively, while referring to them. Similarly, xn

að�Þ shall refer to the perturbed

wavenumber of the nth cut-on mode of the rigid-walled acoustic duct (zero velocities at both edges).
For the sake of clarity, a schematic of the results to be found later is presented here in Fig. 3. The schematic

shows all the wavenumber branches for which asymptotic expressions will be derived in the following
subsections. The asymptotic expressions derived in each subsection shall be valid only for particular frequency
ranges. Each derivation shall be accompanied by an inset picture identical to that of Fig. 3, where the
applicable portion of the branch shall be marked in bold.
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4.1. xs(e)

In order to find xs(e), we assume x ¼ O1/2+a1e+a1e
2. Substituting this expression for x in Eq. (11) and

performing a series expansion about e ¼ 0 we get xs(e) (see Table 2).
From Table 2 the following inferences may be drawn:
�
 For Oo1, since the correction term always remains positive, xsð�Þ4xsð0Þ ¼
ffiffiffiffi
O
p

. Thus, at frequencies below
coincidence, due to the presence of the fluid, the structural wavenumber increases over its in vacuo value. As
the structural wavenumber is proportional to

ffiffiffiffi
m
p

, this denotes mass loading on the structure due to the
presence of the fluid. Also, due to the coth term, the correction becomes large at OE1 or 0, making the
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Table 2

Derivation of the asymptotic expression for xs(e)

Substituting x ¼ O1/2+a1e+a2e
2 in Eq. (11) and performing a series expansion about e we get

4
a1l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � O
p

tan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 �O
p� �

ffiffiffiffi
O
p þ 1

0
@

1
A�þ Oð�2Þ ¼ 0.

Equating terms at Oð�Þ we get a1 ¼ �
1

4

ffiffiffiffi
O
p

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 �O
p

tan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � O
p� �. Hence,

If O41; xsð�Þ ¼
ffiffiffiffi
O
p

1�
�

4

cot l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � O
p� �

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 �O
p|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
correction

2
6664

3
7775. (14)

If Oo1; xsð�Þ ¼
ffiffiffiffi
O
p

1þ
�

4

coth l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O�O2
p� �

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O� O2
p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
correction

2
6664

3
7775. (15)
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asymptotic expression invalid at these frequencies. A different form of expansion needs to be used to find a
valid expression at these frequencies. This will be presented later in this article.

�
 For O41, due to the presence of the cot term, the correction term alternates from positive to negative

values about frequencies O where l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � O
p

¼ ð2nþ 1Þpð Þ=2; ðn ¼ 0; 1; 2; . . .Þ. Immediately beyond
coincidence, the correction term is positive. A positive correction indicates that xs(e) is less than the in

vacuo value xs(0) and hence the fluid loading is in the form of stiffness. A negative correction indicates that
xs(e) is more than the in vacuo value xs(0) and hence the fluid loading is in the form of mass. Thus, the fluid
loading alternates between stiffness and inertia in alternate frequency bands. A spring-mass system backed
by an acoustic cavity has a similar nature of fluid loading [1].

The derived expression in Eq. (14) is invalid for frequencies O such that l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � O
p

� np. These frequencies

occur for OE0, OE1 and On
c ¼ 1=2lþ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4n2p2

p� �
=l; ðn ¼ 1; 2; 3; . . .Þ. For these frequencies, a

different set of expansions will be derived later. Note, that On
c is the frequency at which the in vacuo structural

dispersion curve intersects the dispersion curve of the nth cut-on mode of the rigid acoustic duct.

4.2. xa(e)

The detailed derivation for xa(e) is presented in Table 3.
From Eq. (16) the following inferences may be drawn:
�
 For Oo1, the correction term indicated by the underbraces is negative and thus, xa(e) is lesser than xa(0).
The asymptotic solution turns invalid for OE1 and OE0.

�
 For O41, the correction term indicated by the underbraces is positive and thus, xa(e) is greater than xa(0).

The asymptotic solution turns invalid for OE1.

�
 For large O the correction term decreases. Thus, as the frequency increases, the solution approaches (but

remains greater than) the wavenumber of the acoustic plane wave.

In Fig. 4, are plotted xs(e) and xa(e) using the derived relations in Tables 2 and 3 with l ¼ 3 and e ¼ 0.25.
Overlaid on the plot are the in vacuo structural dispersion curve (in dashed line) and the plane wave acoustic
dispersion curve (in dash–dot line). The asymptotic solutions can be seen to be perturbations of the uncoupled
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Table 3

Derivation of the asymptotic expression for xa(e)

Substituting x ¼ O+a1e+a2e
2 in Eq. (11) and performing a series expansion about e we get

�2ðO2 � 1Þl2Oa1 þ 1
� �

�þ Oð�2Þ ¼ 0.

Equating terms at Oð�Þ we get a1 ¼
1

2

1

ðO2 � 1Þl2O
. Hence,

xað�Þ ¼ O 1þ
1

2

�

ðO2 � 1Þl2O2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
correction

2
6664

3
7775. (16)
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solutions. The coupled acoustic plane wave solution beyond coincidence is seen to approach the linear
acoustic plane wave dispersion curve as the frequency increases. Also, the figure shows that these solutions
blow up near the coincidence region. An alternative solution around OE1 is found in the next subsection for
both xs(e) and xa(e).

4.3. xs(e) and xa(e) (near O ¼ 1)

For solutions near O ¼ 1, we substitute O ¼ 1+eC in Eq. (11), where C is an Oð1Þ quantity positive or
negative. To find xa(e), we use a substitution x ¼ O+a1e+a2e

2 and perform a series expansion about e ¼ 0,
obtaining e�2(2C+4a1)l

2a1e
2+Oð�3Þ ¼ 0. It is not possible to balance this series at Oð�Þ. Thus, a different
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Table 4

Derivation for xs(e) and xa(e) near the coincidence frequency

Substituting x ¼ O+a1e
b+a2e

2b in Eq. (11) and performing a series expansion about e ¼ 0 we get the following order relations for the

terms in Eq. (11)

x4

O2
� 1 �

O4 þ 4O3�b �O2

O2
¼ Oð�bÞ ðsince O ¼ Oð1ÞÞ,

O2 � x2 ¼ Oð�bÞ )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q
¼ Oð�b=2Þ ) tan l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q	 

¼ Oð�b=2Þ,

x4

O2
� 1

� �
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q
tan l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q	 
� �
¼ Oð�2bÞ.

Hence, for order balance it is required to have b ¼ 1
2
. Using x ¼ O+a1e

1/2+a2e in Eq. (11) and performing a series expansion about e ¼ 0,

we get ð�8l2a21 þ 1Þ�þ Oð�3=2Þ ¼ 0. Equating terms at Oð�Þ, we get a1 ¼ �
1
4

ffiffi
2
p

l . Thus, we have xa(e) near coincidence frequency given by

xað�Þ ¼ O�

ffiffiffiffiffi
2�
p

4l
. (17)

Similarly, using x ¼
ffiffiffiffi
O
p
þ a1�1=2 þ a2� in Eq. (11) gives xs(e) near coincidence frequency as

xsð�Þ ¼
ffiffiffiffi
O
p
�

ffiffiffiffiffi
2�
p

4l
. (18)

The proper sign of the correction terms in Eqs. (17) and (18) will be fixed from physical arguments. From Tables 2 and 3 (as also Fig. 4) for

frequencies below coincidence we have xa(e)oxa(0) and xs(e)4xs(0), while for frequencies above coincidence, we have xa(e)4xa(0) and

xs(e)oxs(0). Thus, to attain a continuous transition at the coincidence region the following sign choice is necessary

xsð�Þ ¼
ffiffiffiffi
O
p
þ

ffiffiffiffiffi
2�
p

4l
when O �o1, (19a)

xsð�Þ ¼
ffiffiffiffi
O
p
�

ffiffiffiffiffi
2�
p

4l
when O �41, (19b)

xað�Þ ¼ O�

ffiffiffiffiffi
2�
p

4l
when O �o1, (19c)

xað�Þ ¼ Oþ

ffiffiffiffiffi
2�
p

4l
when O �41. (19d)
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series expansion for x needs to be found. For this we have to resort to an order balance argument. The steps
are shown in Table 4.

Note, xsð�Þ ! 1þ
ffiffiffiffiffi
2�
p

=4l
� �

as O-1� and 1�
ffiffiffiffiffi
2�
p

=4l
� �

as O-1+ while xað�Þ ! 1�
ffiffiffiffiffi
2�
p

=4l
� �

as O-1�

and 1þ
ffiffiffiffiffi
2�
p

=4l
� �

as O-1+. Thus, each branch encounters a jump of
ffiffiffiffiffi
2�
p

=2l at O ¼ 1. Alternatively, at

O ¼ 1, the xs(e) branch for Oo1 becomes continuous with the xa(e) branch for O41, the common value being

1þ
ffiffiffiffiffi
2�
p

=4l
� �

. Similarly, the xa(e) branch for Oo1 becomes continuous with the xs(e) branch for O41, the

common value being 1�
ffiffiffiffiffi
2�
p

=4l
� �

. Thus, the coupled dispersion curves do not intersect each other at the

coincidence frequency but create a gap in the region.

4.4. xs(e) (near O ¼ 0)

It was observed that the coupled structural wavenumber given by Eq. (14) breaks down near O ¼ 0. An
alternative solution for xs(e) valid around O ¼ 0 will be derived in this subsection. Since the plane acoustic



ARTICLE IN PRESS
A. Sarkar, V.R. Sonti / Journal of Sound and Vibration 306 (2007) 657–674666
wave shows a cut-on at a frequency of Oð
ffiffi
�
p
Þ (see derivation in Ref. [1]), no separate solution for xa(e) near

O ¼ 0 needs to be found.
For finding xs(e), we substitute O ¼ eC, and x ¼

ffiffiffiffiffiffi
�C
p

þ a1

ffiffi
�
p
þ a2� in Eq. (11). After performing a series

expansion, the following equation is obtained at Oð�Þ:

�

ffiffiffiffi
C
p
þ a1

� �4
C2

� 1

 !
l2

ffiffiffiffi
C
p
þ a1

� �2
þ 1

 !
¼ 0.

This equation has six roots out of which four are complex valued, one is negative and one is positive. We
know from Eq. (14) that for Oð�ÞoOo1, xs(e)4xs(0). Thus, to get the transition correctly from O ¼ Oð�Þ to
O4Oð�Þ, the positive root is to be chosen. This gives the following solution for

xsð�Þ ¼
ffiffiffiffiffiffi
�C
p

þ
ffiffi
�
p
�

ffiffiffiffi
C
p
þ

1ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
123
p

C2 9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12C2l4 þ 81

p� �
l

� �2=3
þC2l2

ffiffiffiffiffi
123
p

	 


l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12C2l4 þ 81

p� �
l3

r
vuuuuut

0
BBB@

1
CCCA. (20)
4.5. x1að�Þ

In this subsection, we solve for the coupled wavenumber near the first cut-on of the rigid acoustic duct.
Solutions for other xn

að�Þ may be obtained on similar lines. With e ¼ 0, this mode cuts-on at O ¼ p/l. For

0oe51, we shall look to find a solution close to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p2=l2

� �q
for O4p

l. The detailed derivation is presented

in Table 5.
From Table 5, it is seen that a1 becomes large at the first cut-on frequency (O ¼ p/l) and at O1

c , making the
asymptotic solution for x invalid near these frequencies.

In order to get the solution near O ¼ O1
c and correctly capture the transition between OoO1

c and O4O1
c , we

assume O ¼ O1
c þ �C, where C is an Oð1Þ quantity, positive for O4O1

c and negative for OoO1
c . The detailed

derivation for xs(e) and x1að�Þ under this condition is presented in Table 6.
Table 5

Derivation of the asymptotic expression for x1að�Þ

Substituting x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p2=l2

� �q
þ a1� in Eq. (11) and performing a series expansion about e ¼ 0 we get

O2 � p2=l2
� �� �2
O2

� 1

" #
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2l2 � p2

l2

s
a1 ¼ 1.

The solution for a1 is

a1 ¼
O2l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O2l2 � p2
� �

=l2
q	 


O2l2 � p2
� �2

� l4O2
� � .

) a1 ¼
O2l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O2l2 � p2
� �

=l2
q	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 at cut�on

O2l2 � p2 � l2O
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 at O1c

ðO2l2 � p2 þ l2OÞ
. ð21Þ

Therefore, x1að�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p2

l2

q
þ a1� where a1 is as given above
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Table 6

Derivation for xs(e) and x1að�Þ near O
1
c

To find the near-structure solution substitute x ¼
ffiffiffiffi
O
p
þ a1

ffiffi
�
p

where O ¼ O1
c þ �C in Eq. (11). A series expansion about e ¼ 0 leads to the

following relation for a1

�4p2a21l
2
� 4p2a21l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4p2

l2

s
þ p2 þ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4p2

l2

s
¼ 0) a1 ¼ �

1

2l
.

Thus, around O1
c we obtain the following solution for xs(e)

xsð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s
þ �C

vuut
�

1

2

ffiffi
�
p

l
. (22)

For the acoustic cut-on branch around O1
c we substitute x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p2

l2

q
þ a1

ffiffi
�
p

where O ¼ O1
c þ �C in Eq. (11). A series expansion about

e ¼ 0 leads to the following relation for a1

�4p2a21l
2
� 4p2a21l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4p2

l2

s
þ p2 þ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4p2

l2

s
¼ 0) a1 ¼ �

1

2l
.

Thus, around O1
c we obtain the solution for x1að�Þ as

x1að�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s
þ �C

0
@

1
A2

�
p2

l2

vuuut �
1

2

ffiffi
�
p

l
. (23)

We will now fix the proper sign of the second term in Eqs. (22) and (23). From Eqs. (15) and (21) for frequencies below (but not far below)

O1
c , xs(e)4xs(0) and x1að�Þox1að0Þ while for frequencies beyond (but not far beyond) O1

c xs(e)oxs(0) and x1að�Þ4x1að0Þ. Thus to preserve this

transition we need to make the following sign choice for asymptotic solutions about O1
c :

xsð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s
þ 4�C

vuut
þ
1

2

ffiffi
�
p

l
for O �oO1

c , (24a)

xsð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s
þ 4�C

vuut
�

1

2

ffiffi
�
p

l
for O �4O1

c , (24b)

x1að�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s
þ �C

0
@

1
A2

�
p2

l2

vuuut �
1

2

ffiffi
�
p

l
for O �oO1

c , (24c)

x1að�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s
þ �C

0
@

1
A2

�
p2

l2

vuuut þ
1

2

ffiffi
�
p

l
for O �4O1

c . (24d)
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As C-0+, i.e., as we approach O1
c from the higher frequencies,

xsð�Þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4p2

l2

svuut
þ

1

2

ffiffi
�
p

l
and x1að�Þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s0
@

1
A2

�
p2

l2

vuuut �
1

2

ffiffi
�
p

l

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4p2

l2

s
þ

1

4
1þ

4p2

l2

	 

�

p2

l2

vuut
�

1

2

ffiffi
�
p

l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4p2

l2

svuut
�

1

2

ffiffi
�
p

l
. ð25Þ
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Also, as C-0�, i.e., as we approach O1
c from the lower frequencies,

xsð�Þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4p2

l2

svuut
�

1

2

ffiffi
�
p

l
and x1að�Þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2

l2

s0
@

1
A2

�
p2

l2

vuuut þ
1

2

ffiffi
�
p

l

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4p2

l2

s
þ

1

4
1þ

4p2

l2

	 

�

p2

l2

vuut
þ

1

2

ffiffi
�
p

l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4p2

l2

svuut
þ

1

2

ffiffi
�
p

l
. ð26Þ

From Eqs. (25) and (26), it is clear that the xs(e) branch below O1
c continues as x

1
að�Þ branch beyond O1

c , while

x1að�Þ branch below O1
c continues as xs(e) branch beyond O1

c . Both xs(e) and x1að�Þ branches encounter a jump offfiffi
�
p
=l at O1

c .

As seen in an earlier subsection, the xa(e) branch continues as the xs(e) branch beyond coincidence. From the

present discussion it is clear, that this xs(e) branch continues as x1að�Þ for all frequencies beyond O1
c . These

continuity arguments hold true for other cut-on branches also. The xn
að�Þ branch continues as the xs(e) branch

between On
c and Onþ1

c while beyond Onþ1
c it continues as the xnþ1

a ð�Þ branch.

With l ¼ 3 and e ¼ 0.25, solutions for all branches (i.e., xs(e), xa(e) and x1að�Þ) valid for different frequency

ranges are plotted in Fig. 5. A schematic of these results was already presented at the beginning of the section
in Fig. 3. The legends in Fig. 5 are explained in Table 7. The asymptotic equations used for each non-
dimensional frequency range is also shown in Table 7. The valid numerical range for the non-dimensional
frequency in any of the asymptotic expressions in Table 7 has to be determined heuristically. This is in the
spirit of the asymptotic analysis methodology. For example, the asymptotic solution in Eq. (14) requires O to
be lesser than unity (by Oð�Þ) but does not specify the exact numerical value of O upto which the equation can
be used. This value is fixed heuristically in trying to obtain smooth continuous solution across the entire range.

In Fig. 5, the coupled dispersion curves are indicated by the following composite curves (1)
S0–S1–S2–AP3–AP4, (2) AP1–AP2–S3–S4–S5–AC3–AC4, (3) AC1–AC2-S6–S7. We observe that a single
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Fig. 5. xs(e), xa(e) and x1að�Þ solutions of Eq. (11) with e ¼ 0.25 and l ¼ 3. Dashed lines represent solutions with e ¼ 0. Other legends are

explained in Table 7.
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Table 7

Legends in Fig. 5

Legend Solution description Non dimensional frequency range Equation

J Acoustic plane-wave cut-on O ¼ Oð�1=2Þ See [1]

S0 Coupled structure O ¼ Oð�Þ (20)

S1 Coupled structure Oð�ÞoOo1 ðaway from 1Þ (14)

S2 Coupled structure O �o1 (19a)

S3 Coupled structure O �41 (19b)

S4 Coupled structure 1oOoO1
c ðaway from both limitsÞ (15)

S5 Coupled structure O �oO1
c

(24a)

S6 Coupled structure O �4O1
c

(24b)

S7 Coupled structure O1
coOoO2

c ðaway from both limitsÞ (15)

AP1 Coupled acoustic plane-wave 0oOo1 ðaway from both limitsÞ (16)

AP2 Coupled acoustic plane-wave O �o1 (19c)

AP3 Coupled acoustic plane-wave O �41 (19d)

AP4 Coupled acoustic plane-wave 1oO ðaway from the limitsÞ (16)

AC1 Coupled acoustic cut-on p
loOoO1

c ðaway from both limitsÞ (21)

AC2 Coupled acoustic cut-on O �oO1
c

(24c)

AC3 Coupled acoustic cut-on O �4O1
c

(24d)

AC4 Coupled acoustic cut-on O1
coO ðaway from the limitÞ (21)
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composite dispersion curve is made of structural and acoustic segments. For example, (AP1–AP2–S3–S4–
S5–AC3–AC4) is made of the planewave segment (AP1–AP2), the structural segment (S3–S4–S5) and the
acoustic cut-on segment (AC3–AC4).

It may be noted that the solution tracked in Fig. 5 though approximately continuous is not smooth (i.e., not
differentiable) in the transition region. We attribute this to the approximation involved in employing only the
first-order correction factor for the asymptotic solutions. It is expected that higher-order terms in the
asymptotic expansion if used will lead to better smoothness of the solution. However, this will lead to lengthy
expressions, hence we abstain from the use of it. Also, as the objective is to qualitatively understand the nature
of the fluid–structure interaction, we feel the first-order correction is sufficient.

In order to compare our results with Fahy [1], his definition of the non-dimensional wavenumber w ¼ x/O
(defined in Table 1) is used instead of x in all the asymptotic expressions. The resulting curves are shown in
Fig. 6. Figs. 5 and 6 indicate that the branches S0– S1–AP3–AP4, AP1–AP2– S3– S4– S5–AC3–AC4 are in
continuity. Qualitatively their nature is identical to that shown in Fig. (113) and Fig. (110a) in Ref. [1].
However, in Ref. [1], solutions were not tracked using a consistent unified asymptotic framework and for some
branches, numerical techniques were employed. For these reasons, it is difficult to comprehend the solutions in
relation to the in vacuo structure or the acoustic plane wave or cut-on wave solutions. Through asymptotic
analysis, we realise that the effect of fluid–structure interaction is to introduce perturbations in these
well-known solutions. We also get to see how with e-0 these perturbed curves finally collapse to give the
classical solutions.

An interesting conclusion borne out from this analysis is that the dispersion curves get perturbed in such a
manner that they do not intersect at any point. It is only with e ¼ 0, that is the case of no coupling, that the
dispersion curves corresponding to the structure and the acoustic plane and cut-on waves intersect. For e 6¼0,
at these points of intersection, a gap is formed as is seen from Fig. 5 around the coincidence region and O1

c .
At these frequency regions the perturbations are of Oð

ffiffi
�
p
Þ, while for all other frequencies the perturbations are

of Oð�Þ.
Fuller and Fahy [7] in their derivation of the dispersion relation for fluid-filled cylindrical shells accounted

for the presence of fluid by an additional fluid-loading term in the in vacuo structural dispersion relation. In
this sense, our approach of viewing the coupled dispersion relation as in Eq. (11) is in line with theirs. They
also reported that the coupled wavenumber curves cannot intersect. They offered an explanation based on
group velocity of the individual wave modes as to why the intersection cannot occur. The appearance of a gap
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Fig. 6. Asymptotic solutions of Eq. (11) in terms of the non-dimensional wavenumber w defined in Table 1. Dashed lines represent

solutions with e ¼ 0. Other legends are explained in Table 7.
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at the intersection of the dispersion curves was also reported in Cabelli’s work [3]. Both the studies [3,7] depict
branches of the coupled dispersion curves remaining close to the uncoupled curves and undergoing transitions
between the in vacuo structural and the uncoupled acoustic solutions.

Similar to Huang et al. [4] and Choi and Kim [6], we have also found that the fluid loading on the structure
is given by a coth term for the subsonic case and a cot term for the supersonic case. Huang et al. [4] with their
theoretical calculation of fluid wave impedance on the wall in the duct-membrane model showed that if the
structural wave is subsonic then the fluid loading is in the form of inertia. Also, if the structural wave is
supersonic, then the fluid loading under the long-wavelength assumption is in the form of stiffness.

5. Large fluid-loading parameter

Following the development in the previous sections where the range 0oe51 was examined, it is natural to
extend the asymptotic analysis to the other extreme range of large e. Physically, this implies that the mass of
the fluid column is much more than the mass of the structure. After the large e derivations are carried out, we
can understand how the solution evolves as e changes from small to large values.

To model the effect of the large fluid-loading parameter, we substitute e0 ¼ 1/e in Eq. (11) where 0oe051.
The non-dimensional equation then becomes

�0
x4

O2
� 1

	 

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q	 

þ cot l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q	 

¼ 0. (27)

With e0 ¼ 0, we have the following solution:

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q
¼
ð2mþ 1Þp

2
where m ¼ 0; 1; 2; . . .

) O2 � x2 ¼
ð2mþ 1Þp

2l

� �2
) x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 �

ð2mþ 1Þp
2l

	 
2
s

. ð28Þ
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The solution in Eq. (28) corresponds to the cut-on wavenumbers in an acoustic duct with one edge having
velocity-zero and the other having a pressure-zero boundary condition. This mode will be referred to as the
pressure-release mode. Instead of e0 ¼ 0, when 0oe051 the solutions are expected to be perturbations of this
pressure-release mode and shall be denoted by x0ma (called the coupled pressure-release mode). The asymptotic
expression for 0oe051 will be derived for the first pressure-release cut-on mode only, i.e., with m ¼ 0.
Solutions near the other pressure-release cut-ons may similarly be obtained. A detailed derivation of this
asymptotic solution is presented in Table 8.

The asymptotic solution in Eq. (29) remains valid for all frequencies other than those near the first pressure-
release cut-on (i.e., O ¼ p

2l), where the correction term of Oð�0Þ is seen to grow large. The graph of this solution
is presented in Fig. 7 for l ¼ 3 and e0 ¼ 0.2 (or e ¼ 5). The plot indicates that the asymptotic solution turns
invalid near O ¼ p

2l.
Table 8

Asymptotic expansion for large e around the first pressure-release cut-on mode using Eq. (27)

Substituting, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p

2l

� �2q
þ a1�0 þ a2�0

2 in Eq. (27) and performing a series expansion about e0 ¼ 0 we get

16p2O4l4 � 8p4O2l2 þ p6 � 16l4O2p2 þ 32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4O2l2 � p2
� �

=l2
q	 


a1l
6O2

16l4O2p2
�0 þ Oð�02Þ ¼ 0.

Balancing terms at Oð�0Þ we get

a1 ¼ �p2
ð16O4l4 � 8O2l2p2 þ p4 � 16l4O2Þ

32l6O2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4O2l2 � p2
� �

=l2
q .

Thus; x00að�
0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 �

p2

4l2

s
� p2
ð16O4l4 � 8O2l2p2 þ p4 � 16l4O2Þ

32l6O2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4O2l2 � p2
� �

=l2
q �0. (29)
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We are now in a position to understand the behaviour of the coupled free wavenumber as the fluid-loading
parameter e changes continuously from small to large values. In Fig. 8 we replot the solution branch
AP1–AP2– S3– S4– S5–AC3–AC4 of Fig. 5 which was valid for small e, along with the asymptotic solution
for large e obtained through Eq. (29). Two distinct observations can be made based on Figs. 5 and 8. The first
is that for small e, a segment like AP1–AP2 close to the plane wave (or a rigid-walled cut-on mode) makes a
transition to a segment like AC3–AC4 near the next rigid-walled cut-on mode through an intermediate zone
like S3– S4 which is close to the in vacuo structural wavenumber. The second is that as e is increased from zero
to infinity, the entire branch AP1–AP2– S3– S4– S5–AC3–AC4 shifts to x00að�

0Þ (expression of x00að�
0Þ is given in

Eq. (29)). In Fig. 8 this transition of dispersion curves with increasing e is indicated by arrows. Physically, this
implies a change of the boundary condition from a rigid-wall to a pressure-release as the fluid-loading
parameter increases. It may be verified that all the curves xs(0), x

00
að0Þ, x

00
að�Þ and AP1–AP2– S3– S4– S5–

AC3–AC4 intersect at the same point.
Fahy [1] has presented solutions for large fluid-loading parameter values. The occurrence of solutions near

the pressure-release mode for large values of the fluid-loading parameter was shown. In the context of fluid-
filled cylindrical shells, numerical studies for large fluid density were presented by Fuller and Fahy [7]. They
also demonstrated the transition of the wavenumber branches from a rigid-wall to a pressure-release solution
by varying suitable parameters.

As e increases, the branch S1– S2–AP3–AP4 in Fig. 5 shifts continuously from the uncoupled structural and
acoustic curves. We have not been able to find an asymptotic expansion for this branch. We can analytically
justify the existence of a branch x for Eq. (11) such that x4O and x4

ffiffiffiffi
O
p

for all choices of e and l. This has
been argued by Fahy. Fig. 9 presents the numerical solution of Eq. (11) for l ¼ 3 with e ¼ 1 and 16. The
continuous transition of the solution as e increases can be identified from this plot. The solution presented by
Fahy [1] is in agreement with the above result.

All the derived expressions above have only a first-order correction term. As can be seen, this results in
kinks in the corresponding graphs. Higher-order expansions will improve the smoothness of these curves.
Hence, for the sake of clarity and for summarizing our findings we present a schematic plot of all the coupled
wavenumber branches for small and large values of the fluid-loading parameter in Fig. 10.

6. Conclusions

In this article, analytical expressions are derived for the coupled wavenumbers in a 1-D structural acoustic
waveguide. The numerical solutions to the problem were known [1]. The novelty of this article lies in arriving
at the same results through analytical expressions derived using asymptotic methods. All types of wavenumber
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branches (structural, acoustic planewave and acoustic cut-on) are dealt with comprehensively. Apart from the
analytical expressions, the systematic derivation helps to continuously track the wavenumber solutions as the
fluid-loading parameter e is varied from small to large values. A general trend found is that a given composite
branch (made up of structural and acoustic segments) transits from a rigid-walled wavenumber solution to a
pressure-release wavenumber solution with increase in e. It is found that at any frequency where two
wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a
gap (as in Cabelli’s work [3]) is created at that frequency. Finally, this method is simple to implement using a
symbolic package and physically insightful.
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